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In this work we face the numerical approximation by spectral
methods of advection-diffusion equations for convective dominated
regimes, For either boundary and internal layer problems, it has been
recently pointed out that effective methods can be based on dropping
the viscous terms far from the thin layer. This vields a problem that
couples two different model equations (one of hyperbolic type, the
other one of parabolic type) through suitable matching conditions at
subdomain interfaces. An extensive theory has been developed and
effective algorithms have been derived. Here we apply this theory
to spectral approximations to two-dimensional steady problems. In
particular, we investigate the issues of stability and convergence,
and we propose effective algebraic solvers to face both the hyperbolic
and elliptic problems.  © 1993 Academic Press, Inc.

INTRODUCTION

In this paper we analyse numerical approximation to
advection-diffusion problems in which the effects of the dif-
fusion term are prominent only on a small region of the
computational domain. Problems of this type can be found,
for example, in the study of the motion of viscous and
compressible fluids around rigid profiles and in problems of
thermal diffusion,

This solution behaviour allows the identification on the
computational domain of two portions in which the
problem is well represented either by the full advection—
diffusion equation or by a reduced advection equation that
can be obtained by dropping the viscous terms. The main
problem arising from this coupled model is to fix the correct
conditions at the fictitious interface I’ separating the two
regions in order to allow for a correct transmission of
information between the different types of equations.

This problem has been studied in [5], where it has been
shown that the flux continuity should be enforced across the
whole I, whereas the continuity of the physical solution
needs to be satisfied only on that portion of the interface
where the flow leaves the “viscous” domain and enters the
“inviscid” one.

It is, furthermore, possible to solve the coupled problem
by an iterative scheme that allows for an independent solu-
tion of the two subproblems. In this way one can even use
two different numerical solvers, according to the different
nature of each problem.

In this paper we apply the spectral collocation method to
the solution of the coupled problem in a two-dimensional
domain. In particular, we first investigate the spectral
solution of the two subproblems (the reduced advection
equation and the complete advection—diffusion equation).
We enforce the (inflow) boundary conditions implicitly, and
we solve the related systems by the GMRES method by the
help of suitable finite difference preconditioners. These two
independent solvers are then used within the framework of
the iterative procedures that is proposed for the coupled
viscous—inviscid probiem.

We analyze the effect of the interface location on the jump
between the two solutions, as well as the behaviour of the
rate of convergence of the subdomain iterations in terms of
the critical parameters such as the viscosity, the convective
velocity and the number of collocation points that are being
used. Several examples of advection-diffusion problems
whose solution exhibits a boundary layer are approximated.
Considerations on the relation between stability and the
Peclet number are given. We conclude with an application
of our methed to a nonlinear time-dependent advection—
diffusion problem.
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1. THE ADVECTION PROBLEM

In this section we investigate a spectral collocation
method to approximate a hyperbolic equation in a two-
dimensional domain @ =( — 1, 1) Let b, and b be a scalar
and a two-dimensional vector-vaiued function defined in €,
respectively. We consider the following problem:

find u: 2 — R such that

divibu)+ bou=f inQ (1.1)

u=4 on 62, (1.2)
where, if n denotes the unit normal vector to 4 oriented
outward, 402" ={xedQ |b-n<0} is the region of 3@,
where the flux is going into 2 (see Fig. 1.1 for two
examples). The two functions 4: 9Q™ » R and f: © - R are
given from data. We set, moreover, dQ°" = 8Q\oQ™"; 2Q™
and 0Q°"" are termed inflow and outflow boundaries,
respectively,

Let P, denote the space of algebraic polynomials of
degree <N with respect to each variable x and y. We
consider the following one-dimensional Gauss—-Lobatto—
Legendre quadrature formula (see, e.g., [2]):

5 u(qj)a;fl u dx, (13)
J=0 1

where no=1, ny= —1, and n,, for 1 <j<N—1, are the
zeros of the derivative of the Legendre polynomial P, of
degree N {see, e.g., [11]). The coefficients 8; are given by

2
—_—, j=0andj=N
N(N+1
8= £2 ) (1.4)
Vil (Pyn) Py_ (1)), t<j<N-1L

Equality occurs in (1.3} whenever u is a polynomial of
degree less than or equal to 2N —1. We denote now by
Ey=1{(x, ), 0<i, j<N} the set of (N+1)® points

(a) (b}

FIG. 1.1. Inflow and outflow boundary for the two cases: b=(1, )T
(case (a)) and b =y, 1)7 (case (b)). The solid lines of 342 denote the inflow
boundary 80',
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obtained with the cartesian product of the knots #;, and by
E£% the subset of those (N — 1)? points of = internal to £2.

For any vector function v= (v, v,)T defined on @, we
denote by [yv the vector (i,, #,)7, where ,e Py is the
interpolating polynomial of v, at the points of £, (k= 1, 2).
Finalily, if 2 is a subset of 6Q, weset 2, =2 m =,

We can now introduce the following numerical
approximation to the problem (1.1}(1.2),

find u, € P such that
Lyuy+bouy=f at E%uaQ

at 9Q'r,

(1.5)
Uy=A4 (1.6)
where

Lyv:=3{div(Iy(bv))+b-Vv+ v div(Iyb)}}

is a skew-symmetric approximation of div(bv). Precisely,
one has
(Lyt, Wiy o= —(Law, )y o Yo, wePy,

where

(4, Vo= X (1.7)

(xi, ¥ e By

ulx;, y_,r') v(x,, ¥ 9:‘9;'

is a two-dimensional discrete inner product generated by
the quadrature formula (1.3).
Figure 1.2 shows in a schematical way the different role of
the collocation points for the case considered in Fig. 1.1a.
We consider now instead of (1.5)-(1.6} the problem,

find u,, € Py, such that
b-n(uy—A)x,, }’j)

=(Lyuy+boty—f)xi ¥} Ouiryy Yixy }’j)eagt;‘rs
{1.9)

(1.8)

?m®—®—®ﬁ

T x x x

x points of =

X X % ) points of 0%
X X X ® points of OO
—0—0—0—

FIG. 1.2. The subset £, 302 and 229" for the test case of Fig. 1.1a.
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where k(i, j) = j (resp,, {) if (x,, ¥,) belongs to a horizontal
side (resp., vertical side) of 602,

The coefficient 8, ;, that multiplies the value of the
residual of the equation in (1.9) is proportional to N =7
hence as N tends to infinity, the right-hand side of (1.9)
tends to zero yielding in the limit the inflow boundary
condition satisfied exactly at 8€2%, as it was in (1.6).

Remark 1.1. The corner points of £ deserve special
attention. Figure 1.3 reports the three cases of flux on the
corners that may occur: a corner point O is of outflow type
if it separates two sides belonging to 0§25 (case x); it is of
inflow type if both sides sharing Q belong to éQ'y (case g),
it is of inflow/outflow type if one side belongs to 407,
whereas the other betongs to Q%" (case y). The equation
written for each case is described below:

(o) (Lytny+boun)xg, ¥o)

= flxq, ¥o)
(7 (ng'ﬂl+90b‘“2)(u;vﬁ’”(x0, Yol
={Lyuy+bouy—fNxg, yo) Bxb
(y) Oob - ny(uy — A)(xo, Vo)

=(Lyuy+bouy— f)xo, Yo} On8.

Each equation has been obtained by taking as test function
v in the formula (1.10) below the Lagrange polynomial
relative to the corner @, i.e., the polynomialve P, - v{Q) =1,
o(T)=0forali Te=Z,, T#Q.

Concerning accuracy, the problem (1.8}-(1.9) enjoys the
same properties of problem (1.5}-(1.6). However, it is more
suitable than (1.5)-{1.6) to be analyzed. As a matter of fact,
(1.8)-(1.9} turns out to be equivalent to the following
problem, which is the variational discrete formulation to the
problem (1.1+(1.2) (see, e.g., [5]):

(Lyuy, 0o+ (Botty, ) yo—(b-nuy, 0)y som

=(f. V)vo— bk D)yooe  VoeP,. (1.10)

(o) B 4]

FIG. 13. Comer points of outflow, inflow, and inflow/outflow type,
respectively.
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In [57] it is proven that if there exists 8, > 0 such that

1 div[Ivb(p)1+bo(p) 2 By>0  Vpel,
then (1.10) is stable in the sense that
1
B luwlhyn+ |“N|.?v,anw€-'B: LA e+ 1A R ages (LLT)

where ||-||y is the norm associated to (1.7), |v|y 5=
({b-nl, v*)%, where for all Z<aQ, (-, -)ys is the
one-dimensional scalar product generated by (1.3} and
restricted to the nodes of £. The formulation (1.10) allows
one to enforce in a natural way the inflow boundary condi-
tions at all points of #Q%. In particular, one can deduce
from (1.10) the proper way to satisfy the inflow condition at
those nodes of 0627 that are either corner points of Q, or
points separating the inflow from the outflow boundary.
This has been pointed out in the Remark 1.1,

Remark 1.2. The inflow boundary treatment that we
have adopted is a generalization of a similar one formerly
proposed by Funare and Gottlicb {3] for Chebyshev
approximations to one-dimensional problems. Indeed, both
approaches lead to a penalty technique to enforce the
boundary condittons. Here we have derived such a treat-
ment as a result of the variational discrete formula-
tion (1.10) of the spectral collocation problem. Our
interpretation allows in particuiar the derivation of the
correct boundary treatment of corner points. We can obtain
an approximation scheme like (1.5}-(1.6) using the
Gauss-Lobatto—Chebyshev points as well. However, in this
case since the Chebyshev weight function is singular on the
boundary, the weak formulation {1.10) no longer holds.
Numerical results of the following subsection show that,
in order to obtain a stable Chebyshev approximation, the
cocfficient 8, ;) in (1.10) (that in the Chebyshev case is
proportional to N ™'} needs to be replaced with a constant
proportional to N2 This conclusion is in agreement with
the one obtained in [3] for the one-dimensional case.

1.1. Numerical Solution to the Advection Problem

(1.8)-(1.9)

This subsection deals with the algorithmic aspects of the
scheme (1.8}-(1.9). We report in addition the numerical
results obtained for some test problems. Let

Lu=F (1.12)
be the linear systemn associated with (1.8)~(1.9). The vector
u contains the (N + 1) unknown values of u, at the colloca-
tion points of =. The system has been solved using the

GMRES (generalized minimal residual) algorithm. Briefly,
this algorithm can be described as follows (see, e.g., [9]):
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TABLE 1

The Number of GMRES Iterations for the Case (a) with Several
Preconditioners and Several Values of ¥

N 7 9 11 13 15 17 19
Not prec. 38 59 79 105 139 167 =500
Lip 5 7 10 18 24 35 80
i, 4 6 8 10 11 13 14

| 4 4 5 6 7 8 10

Let x, be an initial guess; we consider the Krylov space K,
generated by {rg, Lrg, ..., L 7'ry}, where ry=F — Lx, is
the residue associated with x,. We then compute X so that
the new residue r=F —LX is minimum on K,,. In par-
ticular, if M is equal to the dimension of L, x is the exact
solution of the system. Since the method is generally used
with a smaller M (in order to reduce its computational
complexity), the computed vector X is set equal to x' and
the iterations go on until a desired accuracy is obtained.
We stress now that the matrix L of the system (1.12) 1s ill
conditioned (its condition number grows like a constant
time N?). Thus the number of iterations that are needed
to converge is big, even taking M sufficiently large, This
implies that both the computational cost and the memory
space necessary to implement the method are large when the
dimension of the problem increases, and, by consequence,
the iterative method is not competitive with a direct resolu-
tion. In order to lower the condition number we solve by the
GMRES method the following preconditioned system:

L Lu=Lg! (1.13)

In a first attempt, the preconditioning matrix Lgp can be
obtained by approximating the problem (1.1) by a centered
finite difference scheme at the same grid points of Z,.
An even better preconditioner Ly can be obtained by
approximating, still by a centered finite difference scheme,
the following problem instead of (1.1)

in 2

—g, du+ divibu) + bou=f {1.14)

TABLE 11

The Number of GMRES Iterations for the Case (b) with Several
Preconditioners and Several Values of N

N 7 9 11 13 15 17 19
Not prec. 56 121 213 360 =500 2 500 =500
Lrp 4 5 8 11 17 24 29

| A 4 5 6 8 10 13 16
L 4 5 6 8 10 12 13
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FIG. 14. The logarithm of the maximum norm of the error for the
cases of Tables I and II.

where g, is a properly chosen numerical viscosity. The
Tables I and II report the iteration numbers obtained using
the GMRES without preconditioners and with three dif-
ferent preconditioners. In particular, we note by L1 the
matrix associated to £, = C, and by L}, the matrix related
to g, = C, sin(n(x + 1)/2) sin{z(y + 1)/2), where C, and C,

FI1G. 15, The computed solution for b= 5( —xy, —1)T.
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FIG. 1.6. The computed solution for b= 5(x, (1 — y))".

are constants. These results are referred to the cases (a)
and (b) of Fig 1.1, for an exact solution wu(x, y}=
sin(my) arctg(4{1 + x}). The iterative method is stopped
when the residual is less than 1073, M is fixed to 10, C, and
C, are equal to 0.03 and 0.1, respectively, for the case (a)
and to 0.005 and 0.03 for the case (b).

Figure 1.4 reports the relative errors (4 — u,), in the max-
imum norm, between the exact solution and the spectral
solution, for several values of A, for both cases (a) and (b)
shown in Fig. 1.1. We report now in Figs. 1.5, 1.6 some
results obtained with the scheme (1.8)-(1.9). In the margin
of every picture we draw the domain £ in which the shaded
boundary denotes the inflow boundary. The solution
corresponds to taking f = 1 as the right-hand side and u =0
at all inflow boundary points.

In the following example, we show that the solution
obtained by the collocation Chebyshev scheme (1.8)-(1.9)
presents uncontrolled oscillations (see Fig. 1.7). These
oscillations do not decrease when the number of collocation
points is increased. The solution of the Legendre scheme for
the same problem is instead sufficiently accurate (sece
Fig. 1.8). To obtain an accurate solution by a Chebyshev
scheme, we must replace the coefficient 6, ;, in (1.9} with
the value (2N2 — 1)/(2N?— N)(N?—1) as indicated in [3].
The solution obtained using the new scheme is practically
indistinguishable from the one obtained by the Legendre
method.

i EEa

SiTma il o]
W L A A, 2
L e Ay o

s Irll”/;/’z

FIG. 1.7. The computed solution with the Chebyshev scheme for b=5(y, 1)7.

FIG. 18. The computed solution with the Legendre scheme for b=5(y, 117,



206

2, THE ADVECTION-DIFFUSION PROBLEM

in this section we analyze a collocation approximation
scheme for the advection—diffusion equation
—edutdivibu)+ bou=f inQ 2.1)
To assign the boundary conditions, let 72 and I be two
subsets of Q2 such that F®~ ¥ =5 and I'? U I'¥ = 8Q.
We assume that

au Ne
n onfl (2.2)
u="h on %, (2.3)

where g and A are two given functions.

Since we are interested in approximating problems where
the viscosity ¢ is small, we are sure thatb . n = 0 on I*°. This
prevents incompatibility conditions when the flow is
dominated by the convection. Using the same notations
of the previous section, we obtain now the following
collocation scheme;

find u, € P, such that

—eduy+ Lyuy+bouy=f at=y (2.4)
du
—& (6_:_ g) {x:, yj)
=(—eduy+ Lyuy+bouy— fYx; ¥;) 0y
Vix, y)ely (2.5)
un(x;, ,Vj) =hi{x,, }’j) Vix,, }’j) € Fﬁ- (2.6}

{The index k{7, j) in (2.5} is the same as used in (1.9).)

The Neumann condition {2.2) has been enforced varia-
tionalwise at the outflow collocation points of 3¢
A stability analysis of (2.4)}-(2.6) is carried out in [5].

Numerical results are obtained solving the linear system
associated with the scheme (2.4)-(2.6) by a preconditioned
GMRES method. The preconditioning matrix is now
obtained via an incomplete factorization of the matrix of
finite differences for the problem (2.1)}-(2.3}. This tech-

FRATI, PASQUARELLI, AND QUARTERONI

TABLE 1V

The Number of GMRES Iterations for the Problem (2.4)}-(2.6)
withb=(y, 1)T

N 7 9 11 13 15 17 19
¢=0.1 2 2 2 2 2 2 2
e=001 4 4 5 5 6 6 6
£ =0.001 4 6 8 11 15 20 24

nique, which is known as row sum agreement incomplete
factorization, is described, e.g., in [1, Chap. 5]. The two
following tables report the GMRES iteration numbers for
several values of e. The dimension of the Krylov subspace is
M =10. For both cases the exact solution of the advection
problem (2.1) is u(x, y)=sin(ny}arctg{4(l + x)). The
coefficients are b, =0 and b= (1, 1)" for Tabie III, whereas
b= (y, 1) for Table IV. The right-hand side fis obtained
accordingly. About the boundary conditions, Neumann
data are enforced on the upper side of £2, whereas Dirichlet
data are enforced on the three remaining sides.

—®— g=01

1 —®— g =01

TABLE II1 N
The Number of GMRES Iterations for the Problem (2.4)-(2.6)
withb=(1, 1)T N
N 7 9 11 13 15 17 19
-6 T T T T v . T

e=0.1 2 2 2 2 2 2 2 5 7 9 i1 13 15 17 1 N
e=001 5 7 8 9 10 10 11 ] ]
e =0.001 3 9 12 19 27 40 51 FIG. 2.1. The logarithm of the maximum norm of the error for the

cases of Tables II1 and IV.
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2, Q,

FI1G. 2.2. The decomposition of € into two subdomains.

We show in Fig. 2.1 the maximum norm of the relative
error (# — uy) for several values of N and &. It is clear that
a way to improve the effectiveness of the above collocation
method is to resort to a domain decomposition technique.
For instance, one can subdivide €2 into two disjoint sub-
domains, £, and 2, as indicated in Fig. 2.2, then look for
two polynomial solutions u ), 1% that satisfy a collocation
problem in £, and Q,, respectively, and the prescribed
boundary conditions on 8Q,~dQ and 002,n80.
Moreover, u), and w3 should be continuous on I'=
J02, v 6Q2,, and their fluxes should match, i.e.,

du ul
e——b-nuy=e="—b-m?
on

én

at all collocation points lying on /. Here n is the normal
outward vector to 2, as indicated in Fig. 2.2.

It is well known that a domain decomposition approach
yields generally a better accuracy, and higher geometrical
flexibility than the single domain one. An inside advantage
is the fact that domain decomposition approximations
generally allow a weaker restriction on N to obtain stability.
As a matter of fact, it is known that, in order to prevent
oscillations issuing from critical layers, one should use a
polynomial degree sufficiently large with respect to the
Peclet number, which in turns is proportional to [h| g~

=
1l
—

u=1
FiG. 23. The boundary conditions for the problem (2.7).
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TABLE V

The Lowest Value of the Number of Degrees of Freedom Ensur-
ing a Collocation Solution Free of Oscillations for the Problem
(2.7), for Both the Single-Domain and the Multidomain Approach
{with Two Subdomains)

Single-domain Two-domain

[ .ﬁ=1

B=5 g=1 p=5
0.1 100 400 66 190
0.05 196 748 66 276
001 784 > 1600 190 496
0.005 1600 > 1600 276 780

A convenient position of the interface I allows one to
obtain a multidomain solution free of oscillations with a
number of collocation points significantly smaller than the
one needed for the standard single-domain spectral solu-
tion. As an example, let us consider the problem

du du

~£Au+ﬁ(&+5;

)=0 in(-1,12% (27)

with the boundary conditions indicated in Fig. 2.3. For
several values of £ and f§, Table V reports the lowest number
of degrees of freedom for which the spectral solution is free
of oscillations. We remind that the number of degrees of
freedom pertaining to a spectral solution of degree N is
(N + 1)? in the single-domain case and (2N + 1)(N+ 1) in
the two-domain case. For the problem at hand, the interface
is the vertical line x=1 — \/g

3. THE COUPLING OF HYPERBOLIC AND ELLIPTIC
EQUATIONS VIA THE FICTITIOUS
INTERFACE METHOD

In this section we consider a (steady) advection—diffusion
equation in © for which the viscosity effects are dimen-
sionally negligible apart from a small subregion 2, of Q.
This consideration suggests to solve the complete equation
only on £2, and to solve in the complementary region £, =
2\82, a reduced advection equation obtained dropping
the diffusion term. In this way, one is left with a hyperbolic
problem in £, and an elliptic problem in £,. Across the
interface I'= 0Q, n 82,, we must impose correct transmis-
sion conditions that ensure the consistency between the
original problem and the coupled one. Such conditions, that
have been investigated in [5], state that continuity of the
flux must hold across the whole I, whereas the continuity of
the solution needs to be satisfied only on the subset I of
I, where the flow goes from the elliptic domain £2, to the
“hyperbolic” domain Q,. We consider therefore instead of
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{2.1) the following probiem: find a pair of functions u, v
defined respectively in 2, and 2, such that,

divibu) + byu=f in®2, (1)
—edv+divibp) + b= f in2, (32)
u=4¢ on " (3.3)
v=¢ onl? (34)

ov Ne
B_IE_ on['y¢ (3.5}
e b = -b r 36
85n2+ -nyv= —b-nu on (3.6)
u=v onf™ (3.7)

The subsets 7" and """ are, respectively, the inflow and
outflow boundary of the subdomain £2,, whereas 'Y and
'Y are the portions of #Q, where, respectively, Dirichlet
and Neumann boundary conditions are enforced. n,
denotes the outward unit normal vector on 0€2,, for

by

10 10
3 \ C
05+ \ =G5
3 Wy o
- ".\: b=
8 004 ity oo B
- : I : T
] i by "
—05= ——05
] :
T o
107 st L0

I LA AR el B |

-0 =05 Q0 s w

FIG. 3.1. The solution of the coupled problem for the case
b=((y—2x), )"

k=1, 2. The problem (3.1)-(3.7) can now be approximated
on each side by the collocation schemes proposed in the
previous sections.

We report now some pictures that represent the
computed spectral solution of some test problems. Aside
from any graphics, we draw the partition of £2; the solid
boundary denotes either the inflow boundary for 2, or
the Dirichlet boundary for ©,. In Fig. 3.1 we report the
solution of the problem obtained by choosing ¢=0.01,
b={((y—2x),1}7, 6,=0, and f=1, and homogeneous
boundary conditions. In all our numerical tests, the polyno-
mial degree of the spectral solution within each subdomain
is N =20 (this amounts to 441 gridpoints).

We consider now the problem (2.1) with b= (0, 1)7, ie.,

—eAw+w,=0 (3.8)

with boundary conditions indicated in Fig. 2.3. The
solution of this problem has a boundary layer of thickness

: =
i e

L 0%

(o]

C\{a\ w
e

S ———
=

e ——

—
At

—
GG
S

R

“{

FIG. 3.2. The solution of (3.8) for e =0.001.



THE FICTITIOUS INTERFACE METHOD

O(\/E ) near the right side of 2. We consider a decomposi-
tion of @ for which "= {(x, ¥) | x=1—8./¢}. Figures 3.2
and 3.3 show the numerical solutions relative to ¢ =0.001
and ¢ = 0.0001. In both cases they are very accurate.

In [5] it has been shown that the solution of the problem
(3.1)-(3.7) can be computed as a limit of solutions of two
subproblems within 2, and &,, respectively. Precisely, let
us note first that the conditions (3.6), (3.7) can be replaced
by the following equivalent conditions:

—sﬂ—+b-n1v= —b-a,u onl™ (39)
anz
6 .
2 0 on " (3.10)
on,
U=y on " (3.11)

One can then solve the hyperbolic problem in £2, with the
boundary conditions {3.11) on 7™, and the elliptic problem

FIG. 33. The solution of (3.8) for £ =0.0001.
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in £, with the boundary conditions (3.9), (3.10} on the
interface . The numerical collocation approximation of
these problems can then be obtained using the following
iterative procedure:

Let ° v° be given on F™®; for each n, we look for two
polynomiais u% € Py, ¢4, e P, such that

no_ =0 out out
Ll\{,lu”N"*'bouN—f at I—IN‘EU[‘N‘lUFN

bn(uy—@)= (L, ty+bot'n — 01 4iis) at I’y |
b-n(uy—¥")=(Ly ' +bot'n—f) 0 iy at riﬁ
(3.12)
and
—e A+ Ly i +bovy=f at E?V.z
vy =¢ atr'y,
v’ n R
—S(ant—g)={ﬁ5AvN+LN,zvN
+ bovy~— f) Bk atfﬁfz
—¢g N+b-nz(v’,{,—u’;\,)=(—£dv'}§,+LM2v'fv
n;
+bovyy—f) Bopi y ALY
avn (] "
‘San:=(—EAUN+LN,zU~
+ bty — ) Baiy BT,
(3.13)

where, for n2 1, ¢"=pvy '+ (1 —p)ui""; pis a positive
acceleration parameter that is dynamically computed in
order to minimize at each step the error on the interface I''2.
The coefficients 8, ., ;, in 2, and 8, 4; ;, in 2, are defined
as in the previous sections,

There are two cases in which one of the two problems
{3.12), (3.13) is independent of the other. Precisely, (3.13)
is independent of (3.12) if "=, whereas (3.12) is
independent of (3.13) if /'t = ¢¥. In these situations the
iterative procedure converges, of course, in one iteration.

Let NIT be the minimum value of » such that

" g1
e D) = o

pers  |wh(p)l

We show in Figs. 3.4 and 3.5 some results relative to the
case b= f{y(x+1),1)T that summarize the behaviour of
NIT for various choices of ¢, N, and b. They show that NIT
is independent of the number of grid points, whereas it has
a very mild dependence on the size of £ and |b]. These results
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FIG. 34. The iteration number for different values of N (8 is equal
o)

are in agreement with the theoretical conclusions obtained
m[5]

We rewind that the global solution wy = {u,in 2,;vyin
Q,} of the coupled problem (3.12)~(3.13) is continuous
only on the subset 77 of I, For smooth problems, the value
of the jump across I' (=I"\T"""} is proportional to ¢ (see,
e.g. [7]) In Fig, 3.6, we report the jump on F for the test
problem of Fig. 3.1, for several values of &. On the other
hand, if the solution exhibits a boundary layer, the interface
I"should be located outside the boundary layer (but not too
far from it) (see [6]). In Fig. 3.7, we report the maximum
value of the jump, for several values of . We take I'=
{(%, ), —1 < ¥y <1} for three different values of ¥. The con-
sidered problem is obtained with b=(1,1)", b;=1, and
/=1 and the boundary conditions are indicated in Fig, 2.3.
The solution of this problem exhibits a boundary layer
of thickness O(e) near the vertical wall of 2. We note,
however, that also in this case, the jump is of order ¢
whenever the interface 7 is properly chosen. Note that for
x =1 ¢ the interface is within the boundary layer region.

We emphasize now some potential advantages of the
proposed approach. Since the subproblems defined in €2,
and €2, need to be solved separately, one can in principle use
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FIG. 35. The iteration number for different values of § (N is equal
to 15).
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FIG. 36. The jump on I forb=({y —2x), 1).

a different solver for the hyperbolic problem than for the
elliptic one. Moreover, as for the multidomain elliptic—
elliptic approach described at the conclusion of Section 2,
the restriction on N in terms of the Peclet number is weaker
than in the case of a single-domain approach.

We also remind that the number of iteration of the
multidomain elliptic—elliptic scheme increases when ¢
decreases. Such a resolution technique is therefore expensive
for convection dominated equations. On the contrary, we
have shown that the iteration number of the scheme
{3.12)-(3.13) for the coupled hyperbolic—¢iliptic problem is
practically independent of .

Remark 3.1
now the problem

{Time dependent problems). We consider

F .
ot Au+divibu) + bou = f.

= (3.14)

Discretizing (3.14) in time by an implicit finite difference
scheme, we must solve at any temporal level an advection—
diffusion problem like (2.1). We can then use the iterative
scheme {3.12(3.13) to compute the solution at the new

0_
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&

g 1041

—k— 3-1-g

. —e— 3-1-4E
m-‘ —8— x-1-+%

FIG. 3.7. The maximum jump for several values of ¢ and for several
position of Ffor b= (1, )T
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time. For an explicit time-advancing scheme, the interface
conditions need to be enforced at the new time-level,
yielding a two by two system to be solved at each gridpoint
on /.

4. EXTENSION TO THE NONLINEAR CASE

In this last section we are interested in extension of
the previous approach to a time dependent nonlinear
advection—diffusion equation. We consider, for instance, the
model problem,

?—vgﬂsdw+b(w)-Vw+bow=f

= in Qx(0,T),

{4.1)

where b(w) is a vector function depending on w. We intro-
duce first a temporal approximation. We note by w* the
value of w at the time (k A¢), where At is the temporal
discretization parameter. Equation (4.1) can now be
discretizated in time, for instance, by a scheme dealing with
all terms implicitly except for b(w) which is taken at the
previous time level. The simplest scheme of this family reads

—e AW T L B(w*) -V ! +(A_12+b0) wh+1

W *

k41
A!+f ,

k=0,1,2, .. (4.2)

In this way at each time-level we need to solve an
advection—diffusion problem like the one faced in the pre-
vious section. Interface conditions between the hyperbolic
subdomain £, and the elliptic subdomain £2, become

X o 00 k K+t
—b(u*) n " =¢ 3 —b(v*)-n,v onf”
“I (4.3)
wtl=p**+1 where b(u*)-n, <0,
where u**! and v**! denote the solution in £, and .,
respectively.

Then we can use the scheme (3.12)-(3.13) to approximate
(4.2)-(4.3). We consider now a test problem investigated in
[10] in which Q=(—1,1)% by=f=0, biw)=(w, o),
where ¢ is a constant and the initial condition is

wolx, ¥y)=1(1+ y—xy—5x).

Although initially smooth, the solution of this problem
develops an internal layer at some finite time of width O{g).
This fact suggests that we use a decomposition of £ into
three subdomains instead of two. In this way we can solve
the complete equation only in the central domain 2, =
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FIG. 4.1. The sclution of the nonlinear problem (4.1} at the ume
+=0.15.

(0, 04) x { —1, 1), where the soiution exhibits a sharp layer.
In the remaining subdomains 2,=(—1,0)x{—1, 1) and
2,=(04,1)x(—1,1) we solve the reduced advection
equation solely. The iteration procedure for this case can
be easily obtained by adapting the one described in the
previous section.

As boundary conditions, we prescribe wix, y, t)=
wo(x, ¥) ¥i >0 for all points (x, y) belonging to the lower
horizontal as well as the two vertical sides of . Further, we
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FIG. 42. The solution of the nonlinear problem (4.1) at the time
t=020.
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FIG. 43. The solution of the nonlinear problem (4.1} at the time
1=030.

satisfy a homogeneous Neumann condition on the upper
horizontal side of 2.

We report some pictures that represent the computed
solution for different time levels. This solution refers
to the values e=0.1x10"% o¢=1; we have taken dr=
0.12 x 10~* and (34) collocation points in each subdomain.
We plot the solation at the time levels ¢+ =0.15 (Fig. 4.1),
r=0.20 (Fig. 4.2), and =030 (Fig. 4.3). We can see that
the coupling relationships (4.3) yield a very accurate
numerical solution of the nonlinear problem at hand.

5. CONCLUSION AND DISCUSSION

We have discussed the algorithmic aspects of the so-called
fictitious interface method for the numerical approximation
of convection-dominated flows. This method is based on the
assumption that the viscous terms can be dropped outside
tiny regions embodying the critical layers.

The solution algorithm relies on alternating the solution
of advection equation and the one of advection—diffusion
equation within complementary subdomains. To this end,

we have presented efficient algebraic solvers (based upon
the preconditioned GMRES method) to face either advec-
tion or advection-diffusion boundary-value problems.

For all problems here considered, the spatial discretiza-

tion is achieved by the spectral collocation method using
Legendre-Gaussian nodes. Several numerical tests have
been carried out on linear problems; further, an application
of the fictitious interface method to a nonlinear Burgers
equation is shown. ‘A systematic approach to nonlinear
problems is presented in [6]. In all example here con-
sidered, the interface location was decided a priori (accord-
ing to the physical nature of the expected solution). In more
general situations (e.g., in time-dependent and/or non-linear
problems), the location of the interface would be better
chosen dynamically, or else by a control procedure. Also
this issue is discussed in (6],

11.
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